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• N2H3 and NO2:  major components of N2H4 + NTO earlier ignition

• NTO consists of structural conformers:
NO2, sym-N2O4 (D2h), cis-ONONO2, trans-ONONO2

• Hypergolicity of hydrazine/N2O4 :

N2H4 + cis-ONONO2  HONO2 + H2NN(H)NO           (k1a)
N2H4 + trans-ONONO2  HONO2 + H2NN(H)NO       (k1b)
H2NN(H)NO  N2H3 + NO                                           (k2)

k1 = 4  10-10 cm3 molecule-1 s-1 ( 250 K)
k2 = 1  107 s-1 (1000 K)
(M.C. Lin et al., Chem. Phys. Lett, 2012, 537, 33)

• Fast exothermic reactions:
N2H3 + NO2 (Radical + Radical)  addition  products 
N2H3 + N2O4 (Radical + Stable)  abstraction  products

N2H4 + NTO Hypergolic Ignition
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• Practically

 Occurs with negative energy barrier and large exothermicity, significant 
importance in N2H4 + NTO  ignition

• Theoretically

 Occurs via a complex reaction mechanism

 Multireference characters of wavefunction are significant due to the 
electron repulsion between electronegative O and N atoms

 Quantitatively correct description of the electron correlation in presence of 
configurational quasi-degeneracy effects 

 Chemically accurate representation of exact molecular wave function, and 
exact energy for prediction of accurate rate coefficient 

Motivation: NO2 + N2H3
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Theoretical Approach

Electronic Structure Calculations

 Geometries optimization and ro-vibrational frequencies  by multireference second-order 
perturbation theory (CASPT2) with aug-cc-pVDZ or aug-cc-pVTZ basis sets

 For R + R addition and abstraction, the energies were extrapolated  the CBS limit from 
those of CASPT2/aug-cc-pVQZ and CASPT2/aug-cc-pVTZ

 For dissociation of addition adducts, the energies were extrapolated  the CBS limit from 
those of CCSD(T)/cc-pVQZ and CCSD(T)/cc-pVTZ

Kinetic Rate Coefficients

 Two transition state theory for submerged energy barriers
 Microcanonical TST at E/J resolved level  

 rigid-rotor harmonic-oscillator assumptions
 tunneling correction with asymmetric Eckart potentials 
 Master equation analysis via an eigenvector based approach
 Exponential down energy transfer models
 Lennard-Jones collision rates

4
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N2H3 + NO2  (Abstraction)
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Tt-I E All't FOFtC E R ES EARCH LAO O FtAT O AV 
LI;AO I O I SCOVI:IR I 06VI:ILOP I OI!LI VIi.R 

CASPT2/CBS 
RCCSD(T)/CBS/ /CASPT2 

;... 
PHBC4 
-14.12 

PHBC2 
-22.73 

PHBC1 
-39.54 

:NNH2+ HN02 

-2.49 

Unit: kcal/mol 

:NNH2 + trans-HONO -10.82 

:NNH2 + cis-HONO -10.92 

trans-NH=NH + cis-HONO 

-34.81 
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19.1 20.1 21.1
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Optimized at the CASPT2(4e,3o)/aug-cc-pVTZ level

TSA2   NNH2-cisHONO
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17.1 18.1 19.1

20.1 20.1 22.1

TSA4  NNH2-HNO2

7Optimized at the CASPT2(8e,6o)/aug-cc-pVDZ level
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• Inner TS
– Covalent bond formation
– Energy barriers:CASPT2/CBS
– Rigid rotor harmonic oscillator      

• Outer TS
– Phase space theory
– Long range isotropic potential

(Georgievskii & Klippenstein, 
J. Chem. Phys. 2005)

• Effective TS
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k1, trans-NH=NH + cis-HONO 
k2, :NNH2 + cis-HONO
k3, :NNH2 + trans-HONO
k4, :NNH2 + HNO2

k, total 

Rate Coefficients:  Abstraction

N2H3 + NO2
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NN Addition Potential 
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3.80
3.05

2.32

3.40

2.86

2.40

Ho
f, NHNH2

= 55.3 kcal/mol
Ho

f, NO2
= 7.9 kcal/mol
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TS1 (i32.35  cm-1)

Optimized at the CASPT2(2e,2o)/aug-cc-pVDZ level

20.1

21.1

3.5502.668

2.359

Ground state destabilization:
orbital splitting (p - p repulsion) on NO2

Addition of N2H3 + NO2
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PES of N2H3 + NO2  (Addition)Tt-I E All't FOFtC E R ES EARCH L AO O FtA T O AV 
LI;AO I O I SCOVI:IR I 06VI:ILOP I OI!LI VIi.R 
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0.05 
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~ W' -4.48 
TS2 -4.62 
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TS3 
-1.99 

TS5 
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Unit: kcal/mol 

H=NH + t rans-HONO 
-29.86 

NH + trans-HONO 
-34.72 

11 
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CASPT2(8e,6o)/aug-cc-pVDZ

N2H3-NO2  Adduct Decomposition
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TS3

i1067.05 cm-1

2.239
1.417

Electron transfer for N-N bond breaking
Thermodynamic product stability

Adduct-1 
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PES of N2H3 + NO2  (Addition)Tt-I E All't FOFtC E R ES EARCH LAO O FtAT O AV 
LI;AO I O I SCOVI:IR I 06VI:ILOP I OI!LI VIi.R 

0.0 

TS-1c 
7.25 
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-11.31 

1.81 
-0.85 

(0.031) -20.39 

CASPT2/aug-cc-pVDZ 
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T1 diagnostic: RCCSD(T)/cc-pVQZ//CASPT2 

Unit: kcal/mol 

NH2NHO +NO -6.94 

TS-3 
-9.72 
4.00 
(0.029) 

trans-NH=NH + cis-HONO 

-34.81 

.. ,.... 
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Rate Coefficients:  Addition

1000/T (K)
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k1, N-N addition, Ea=-11.73 kcal/mol
k2, N-O addition, Ea=-11.61 kcal/mol

k1, NO2 + N2H3  NH2NHNO2

k2, NO2 + N2H3  NH2NHONO 
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Rate Coefficients:  Dissociation

NO2 + NHNH2 => Products

P = 1atm 

1000/T (K)
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NH2NH+NO2 (high pressure limit) 
trans-N2H2+trans-HONO 
cis-N2H2+trans-HONO 
cis-N2H2+trans-HONO 
trans-N2H2+trans-HONO 
NH2NNO2H 

• Microcanonical TST at the E/J 
resolved level employing rigid-rotor 
harmonic-oscillator assumptions

• The pressure-dependent kinetics 
analysis using single-well master 
equation for irreversible dissociation
at the E/J resolved level 

• The collisional energy transfer 
probability was approximated by: 
∆Edown = 200(T/300)0.85cm-1

• The Lennard-Jones parameters for 
collision rates were estimated to be 
σ = 4.84 Å and ε = 441 cm-1

trans-NH=NH + trans-HONO

NO2 + N2H3  high pressure limit

cis-NH=NH + trans-HONO
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Concluding Remarks
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 Four abstraction channels were found with the negative 
energy barriers up to 12  kcal/mol, and product H-bonded 
complexes have 5 - 12 kcal/mol energies stable than the 
dissociation products

 Abstraction by the nucleophilic O atom forming trans-N2H2
+ cis-HONO is exothermic to 34.8 kcal/mol, forming NNH2 + 
cis-HONO is the dominant channel

 The NO2 addition to the N2H3 radical proceeds via a 
complex mechanism. The NN addition is more favorable 
than the NO addition

 The predominant channel for the dissociation of the N–N 
addition adduct is an intramolecular H-transfer to form the 
trans-HONO + trans-N2H2 products
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